Projection Matrices from Trifocal Tensor

To recover the projection matrices from the trifocal tensor , we can use the relationship between the trifocal tensor and the projection matrices of the three views. Here’s the process:

1. Relationship Between the Trifocal Tensor and Projection Matrices

The trifocal tensor T encodes the relationship among three views:

  • The first projection matrix is typically chosen as P1=[I0], where I is the 3×33 \times 3 identity matrix and 00 is a 3×13 \times 1 vector.
  • The second and third projection matrices P2=[Aa4]P_2 = [A \, | \, a_4] and P3=[Bb4]P_3 = [B \, | \, b_4] can be derived from the trifocal tensor.

For canonical projective geometry:

  • Each slice TiT_i of TT is given by: Ti=aib4a4biT_i = a_i b_4^\top - a_4 b_i^\topwhere aia_i and bib_i are the columns of AA and BB, respectively.

2. Recovering a4a_4, b4b_4 (Epipoles)

The epipoles e21e_{21} and e31e_{31}, corresponding to a4a_4 and b4b_4, can be extracted as follows:

  • e31e_{31} (third image epipole in the first image) is the common null space of the matrices T1T_1, T2T_2, and T3T_3.
  • e21e_{21} (second image epipole in the first image) is similarly obtained from the slices T1T_1^\top, T2T_2^\top, T3T_3^\top.

3. Recovering AA and BB (Camera Matrices)

Given the epipoles a4=e21a_4 = e_{21} and b4=e31b_4 = e_{31}:

  • The slices of TT can be used to form a linear system to recover AA and BB.

Python Code to Recover Projection Matrices

import numpy as np def recover_projection_matrices(T): """ Recover the projection matrices P1, P2, and P3 from the trifocal tensor T. Parameters: T: numpy array of shape (3, 3, 3) - The trifocal tensor. Returns: P1, P2, P3: Projection matrices of shape (3, 4). """ # Canonical choice for P1 P1 = np.hstack((np.eye(3), np.zeros((3, 1)))) # [I | 0] # Recover epipoles (a4 and b4) # Epipole e31: Null space of [T1, T2, T3] _, _, Vt = np.linalg.svd(np.stack([T[0].flatten(), T[1].flatten(), T[2].flatten()])) e31 = Vt[-1].reshape(-1) # Last row of Vt gives the null space e31 /= e31[-1] # Normalize to homogeneous coordinates # Epipole e21: Null space of [T1.T, T2.T, T3.T] _, _, Vt = np.linalg.svd(np.stack([T[0].T.flatten(), T[1].T.flatten(), T[2].T.flatten()])) e21 = Vt[-1].reshape(-1) e21 /= e21[-1] # Recover matrices A and B from T and epipoles A = np.zeros((3, 3)) B = np.zeros((3, 3)) for i in range(3): A[:, i] = T[i] @ e31 B[:, i] = T[i].T @ e21 # Construct P2 and P3 P2 = np.hstack((A, e21.reshape(-1, 1))) P3 = np.hstack((B, e31.reshape(-1, 1))) return P1, P2, P3 # Example usage: # Replace T with the actual trifocal tensor T = np.random.rand(3, 3, 3) # Replace with your trifocal tensor P1, P2, P3 = recover_projection_matrices(T) print("P1:\n", P1) print("P2:\n", P2) print("P3:\n", P3)

Explanation:

  1. Canonical Initialization: P1P_1 is set as [I0][I \, | \, 0].
  2. Epipole Recovery: The epipoles e21e_{21} and e31e_{31} are extracted as the null spaces of the appropriate slices of TT.
  3. Matrix Recovery: Using the epipoles and slices of TT, the projection matrices AA and BB are computed.
  4. Projection Matrices: P2P_2 and P3P_3 are assembled from A,e21A, e_{21} and B,e31B, e_{31}.

Comments

Popular posts from this blog

The Trilinearity Equation For Trifocal Tensor Estimation (Direct Linear Estimation)